1 Earth \& Moon

The relative positions of Earth, Sun and Moon produce the most noticable events in the nightime (and daytime) skies.

Fact: The angular diameter of Moon is approximately 0.5°
Fact: The angular diameter of Sun is approximately 0.5°
These angular measurements are dependent on the distance from Earth. The Sun is approximately 400 times larger than Moon, but Sun is approximately 400 times further away.

	Moon	Sun	X
Minimum Distance (km)	363,300	$147,100,000$	404
Maximum Distance (km)	405,500	$152,100,000$	375
Average Distance (km)	384,400	$149,579,000$	389
	Moon	Sun	X
Diameter (km)	3476	$1,391,980$	400

1.1 Lunar Phases

Sidereal Period The time it takes Moon to return to the same point in the sky.
27.321661 days

Synodic Period The time it takes Moon to go from full moon to the next full moon.
29.5305882 days

This is longer than the sidereal since Earth is also moving in its orbit around Sun. Moon must travel further in its orbit to reach the same phase.

© 2005 Brooks/Cole - Thomson

1.1.1 Phases

New Moon
Waxing Crescent
First Quarter
Waxing Gibbous
Full Moon
Waning Gibbous
Third Quarter
Waning Crescent
New Moon

© 2005 Brooks/Cole - Thomson

Rise and Set Times When does First Quarter Moon rise?
When does Full Moon set?
Etc.

© 2005 Brooks/Cole - Thomson

1.2 Tides

The gravitational attraction by Moon on Earth's ocean creates a bulge toward Moon.

The gravitational attraction by Moon on the center of mass of Earth creates another bulge on the other side of Earth. Hence, two high tides per day and two low tides.

Sun also affects tides.

Spring Tides Occur near full and new moons. Sun and Moon add together to produce larger tidal swings.

Neap Tides Occur near first and third quarter. Sun and Moon are more perpendicular.

Actually, the bulge is not directed directly at Moon but leads Moon by a little bit.

Tidal Effects Slows the rotation of Earth. Frictional force between the water in the oceans and the surface of Earth. Earth is slowing by 0.001 seconds per century.

Same side of Moon always faces Earth.

Moon's orbit is also getting bigger. Moon is pulled forward in its orbit causing it to move faster and be flung into a higher orbit. Moon's is moving away from Earth at a rate of $3 \mathrm{~cm} / \mathrm{y}$.

1.2.1 Lunar Eclipses

Occur at full moon phases only
Moon enters Earth's shadow
Doesn't happen each month. Moon's orbit is inclined to the ecliptic by $5^{\circ} 9^{\prime}$.
Earth's shadow is about 1.4 million kilometers long and is 9000 kilometers wide at Moon's distance from Earth. Moon's diameter is 3476 kilometers.

Penumbral shadow
Umbral shadow - dark

Year	Time* of Mideclipse (GMT)	Length of Totality (Hr:Min)	Length of Eclipse ${ }^{\dagger}$ (Hr:Min)
2006 Sept. 7	18:52	Partial	1:30
2007 Mar. 3	23:22	1:14	3:40
2007 Aug. 28	10:38	1:30	3:32
2008 Feb. 21	3:27	0:50	3:24
2008 Aug. 16	21:11	Partial	3:08
2009 Dec. 31	19:24	Partial	1:00
2010 June 26	11:40	Partial	2:42
2010 Dec. 21	8:18	1:12	3:28
2011 June 15	20:13	1:40	3:38
2011 Dec. 10	14:33	0:50	3:32
2012 June 4	11:03	Partial	2:08

*Times are Greenwich Mean Time. Subtract 5 hours for Eastern Standard Time, 6 hours for Central Standard Time, 7 hours for Mountain Standard Time, and 8 hours for Pacific Standard Time. From your time zone, lunar eclipses that occur between sunset and sunrise will be visible, and those at midnight will be best placed.
tDoes not include penumbral phase.
© 2007 Thomson Higher Education

Total lunar eclipse Occurs when Moon moves completely inside the umbral shadow of Earth. Will glow coppery red due to the light being bent around Earth by its atmosphere.

Partial lunar eclipse Moon enters the umbra only partially.
Penumbral lunar eclipse Moon does not enter the umbra at all but enters the penumbra. Results in only a partial dimming and is difficult to detect.

Angular Diameter

Small-Angle Formula

$$
\frac{\text { angular diameter }}{206,265^{\prime \prime}}=\frac{\text { linear diameter }}{\text { distance }}
$$

The number 206, $265^{\prime \prime}$ is the number of seconds of arc in one radian. For Moon

$$
\frac{\text { angular diameter }}{206,265}=\frac{3476 \mathrm{~km}}{384,000 \mathrm{~km}}
$$

The angular diameter of Moon in the sky is 1870 seconds of arc or 31 minutes of arc, which is approximately 0.5°.

1.3 Solar Eclipses

Occur at new moon
Moon passes between Earth and Sun
Moon's shadow at the distance to Earth can be up to about 200 miles wide.

Total Solar Eclipse Can be viewed safely with the naked eye Photosphere is totally covered

Just before and after totality, the sun's light shines through the vallies of Moon and produces the diamond ring effect.

Partial Solar Eclipse Not safe to look at with the naked eye
Pinhole projection is easy and safe

Annular Eclipse
Not safe to view with the naked eye
When Moon is near its aphelion point in its orbit, further from Earth, smaller angular diameter

- Table 3-2 1 Total and Annular Eellpses of the Sun, 2006 to $2016^{* *}$

Date	Total//Annular (T/A)	Time of Mideclipse* (GMT)	Maximum Length of Total or Anzular Phase (Min:Sec)	Area of Visibility
2036 Mac 29	T	$10^{\text {h }}$	$4: 37$	Atlantic, Afries, Iurkey
2035 Sept. 22	A	$12^{\text {h }}$	7:09	N.E. of S. America, Atlantic
2008 Feh 7	A	$4^{\text {h }}$	2:14	S. Pacific, Antarctica
2008 Aug. 1	T	10°	2:28	Canada, Auctic, Sliberia
2009 Jan. 25	A	$8{ }^{\text {a }}$	7:56	S. Atlantic, Indian Ocean
2099 July 22	T	$3^{\text {a }}$	6:40	Asia, Pacific
2010 Jan. 15	A	$7{ }^{\text {7 }}$	11:10	Africa, Indian Ocean
2010 Jaly 11	T	20^{4}	5:20	Pacific, S. Arerica
2012 May 20	A	23^{4}	5:46	Japan, N. Pacific, W. U.S.
2012 Nov. 13	T	$22^{\text {a }}$	4:02	Australiz. S. Pacific
2013 May 10	A	$0^{\text {A }}$	6:04	Australis, Pexilic
2013 Nov. 3	AT	$13^{\text {b }}$	1:40	Atlantic, Arrica
2015 March 20	T	10°	2:47	N. Atlants, Arstic
2016 March 9	T	$2^{\text {h }}$	4:10	Bomeo, Pacific
2016 Sept. 1	A	¢h	3306	Atlantic, Africa, Indian Oc.

The neat major total solar eclipse visible fron the United States will cccur on August 21, 2017.
 factic Stardard Tixe
'hours.
*There an no tocal or annutar ecipose of the sus durng 2014.

Line of Nodes Both lunar and solar eclipses can occur when the line of nodes of Moon's orbit points in the direction of Sun.

When the nodes point away from Sun

Saros Cycle 18 years, $11 \frac{1}{3}$ days (6585.321 days)
Known in ancient times
After 3 Saros cycles, eclipses repeat in the same part of the world

