

Date/Time run: 04/03 22:32:27 Temperature: 27.0 (A) Modified Sequence Counter with the counting sequence 0,2,1,3,7,5,6 and repeat CLOCK В С COUNT 0s 2ms 4ms 8ms 10ms 6ms

Time

Date/Time run: 04/03 22:32:27 Temperature: 27.0 (A) Zooming in on the initialization pulse shows the counter being initialized to count 3 INIT CLOCK Α В С Χ COUNT

300ns

Time

400ns

500ns

600ns

200ns

0s

100ns

<u>Example</u>: Design a modified sequence counter using the excitation table method that will count in the sequence 0,2,1,3,7,5,6, and repeat. Treat unused count 4 as a "don't care". Use JK flip-flops.

Circuit Excitation Table

Present State			Next State			Flip-flop Inputs					
A	В	C	A	В	C	JA	KA	JB	KB	JC	KC
0	0	0	0	1	0	0	X	1	X	0	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	0	0	1	0	X	X	1	1	X
0	1	1	1	1	1	1	X	X	0	X	0
1	0	0	X	X	X	X	X	X	X	X	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X
1	1	1	1	0	1	X	0	X	1	X	0

JK Flip-flop Excitation Table

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Flip-flop Input Functions and Circuit Output Functions

ABC	00	01	11	10
0	0	0	1	0
1	X	X	X	X

$$JA = BC$$

$$JB = 1$$

$$JC = A'B$$

$$KA = C'$$

$$KB = A + C'$$

$$KC = AB'$$