Modified Sequence Counter

Purpose: A counter has been designed to count in the sequence $0,2,1,3,7,5,6$, and repeat using JK flip-flops and the excitation table method. See the attached sheet for the details of the design.

A Digital Clock was used to generate a 1 kHz input to clock the counter. Additionally, PSPICE requires that synchronous devices be initialized, so another Digital Clock is used to briefly provide a LOW pulse to initialize the counter to 3 (use ClearA, Preset B, and PresetC to preset to 011). The unused Preset and Clear lines must be tied HIGH.

Analysis: A TRANSIENT analysis with a final time of 10 ms is used to show ten output counts since the period of the clock is $1 \mathrm{~ms}(1 / 1 \mathrm{kHz})$.

Note: The results of the design by the excitation table method are as follows:

$$
\begin{array}{ll}
\mathrm{JA}=\mathrm{BC} & \mathrm{KA}=\mathrm{C}^{\prime} \\
\mathrm{JB}=1 \\
\mathrm{JC}=\mathrm{A}^{\prime}+\mathrm{B} & \mathrm{~KB}=\mathrm{A}+\mathrm{C}^{\prime} \tag{A}\\
\mathrm{KC}=\mathrm{A}+\mathrm{B}^{\prime}
\end{array}
$$

Note: The HI input is available by pressing the GND icon on the toolbar and then selecting \$D_HI/SOURCE
(MSB)

(A) Zooming in on the initialization pulse shows the counter being initialized to count 3

Example: Design a modified sequence counter using the excitation table method that will count in the sequence $0,2,1,3,7,5,6$, and repeat. Treat unused count 4 as a "don't care". Use JK flip-flops.

Circuit Excitation Table

Present State			Next State				Flip-flop Inputs					
A	B	C	A	B	C	JA	KA	JB	KB	JC	KC	
0	0	0	0	1	0	0	X	1	X	0	X	
0	0	1	0	1	1	0	X	1	X	X	0	
0	1	0	0	0	1	0	X	X	1	1	X	
0	1	1	1	1	1	1	X	X	0	X	0	
1	0	0	X	X	X	X	X	X	X	X	X	
1	0	1	1	1	0	X	0	1	X	X	1	
1	1	0	0	0	0	X	1	X	1	0	X	
1	1	1	1	0	1	X	0	X	1	X	0	

JK Flip-flop Excitation Table

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Flip-flop Input Functions and Circuit Output Functions

$\mathrm{JA}=\mathrm{BC}$

$\mathrm{JB}=1$

$\mathrm{KB}=\mathrm{A}+\mathrm{C}^{\prime}$

$$
\mathrm{JC}=\mathrm{A}^{\prime} \mathrm{B}
$$

$$
\mathrm{KC}=\mathrm{AB}^{\prime}
$$

