Combinational Logic Circuit

Purpose: Implement the function $f(A, B, C, D)=\operatorname{Sum}(0-3,6-7,11,14-15)=A^{\prime} B^{\prime}+B C+C D$ using $A N D, O R$, and NOT gates. Analysis: In order to display the output for all 16 combinations of inputs, a TRANSIENT analysis will be performed. Since D is the LSB and has an ONTIME and OFFTIME of 1 ms , the transient analysis should be performed for at least $16(1 \mathrm{~ms})=16 \mathrm{~ms}$.

Notes:

1) The logic gates are found in the EVAL library.
2) Digital Clocks from the SOURCE library are used for the circuit inputs.
3) The frequency (or the ONTIME and OFFTIME) of the digital clocks is not important. The ONTIME and OFFTIME
for D were chosen as 1 ms , but could have just as easily been lus or 5 s .
4) OFFPAGE symbols (<<C on the toolbar) were used to conveniently label the inputs A, B, C, D
and the output F . These labels can then be used when graphing the results.
5) The binary value of the input has been displayed on the graph by using a BUS (group of signals). To do this, analyze the circuit and on the graph select TRACE - ADD then enter $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\} ; \mathrm{COUNT} ; \mathrm{D}$ where
$\{A, B, C, D\}$ represents the signals in the binary value with the MSB listed first
COUNT could be any name that will appear on the graph
D means to show the count in decimal format
(use B for binary, O for octal, and H or X for hexadecimal)

** circuit file for profile: Transient

