EGR 120
Introduction to Engineering
File: SOLVE.MCD

MathCad Example: Using SOLVE BLOCKS

A very powerful feature within MATHCAD is the SOLVE BLOCK. The SOLVE BLOCK allows you to analyze a wide variety of problems according to a set of constraints that you specify. Several examples are shown below.

Example 1: Solving Simultaneous Equations

$$
\begin{aligned}
& \mathrm{X}:=0 \\
& \mathrm{Y}:=0 \\
& \mathrm{Z}:=0 \\
& \text { Given } \\
& 3 \cdot \mathrm{X}+4 \cdot \mathrm{Y}+8 \cdot \mathrm{Z}=12 \\
& 2 \cdot \mathrm{X}-7 \cdot \mathrm{Z}=13 \\
& -9 \cdot \mathrm{X}+\mathrm{Y}=-2+4 \cdot \mathrm{Z} \\
& \mathrm{R}:=\operatorname{Find}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}) \\
& \mathrm{R}=\left[\begin{array}{c}
1.408 \\
4.854 \\
-1.455
\end{array}\right]
\end{aligned}
$$

Note: Include an initial guess for the variables to be found.

Note: Begin the SOLVE BLOCK with the word GIVEN.

Note: The SOLVE BLOCK must end with a Find statement.
Note: Display the results.

Example 2: Simplifying Algebraic Equations

(Let MATHCAD do your algebra for you!)
$\mathrm{x}:=0$
Given
$3 \cdot x \cdot \sin \left(42 \cdot \frac{\pi}{180}\right)+\frac{17.6 \cdot x}{4.89}+(2 \cdot x-72) \cdot 0.785=3.56 \cdot \pi-1.25 \cdot 10^{3}$

Q :=Find(x)
$Q=-164.744$

Example 3: Solving Non-linear Equations

$\mathrm{x}:=0$
Given
$14 \cdot \mathrm{e}^{-2 \cdot \mathrm{x}}+3 \cdot \cos (6 \cdot x)=21 \cdot x \quad$ (Not an easy equation to solve!)
Answer:= Find (x)
Answer $=0.313$

Example 4: Finding Roots of Equations

Note: The function defined below should have 3 roots. A look at the graph will be helpful in making initial guesses.

$$
\begin{aligned}
& X:=0, .1 . .5 \\
& F(X):=X^{3}-9.1 \cdot X^{2}+25.2 \cdot X-21.1
\end{aligned}
$$

Note: It looks like the 1 st root is between 1 and 2 , the 2 nd root is between 2 and 3 , and the 3 rd root is between 4 and 5 .
$\mathrm{X}:=1 \quad$ Note: A guess for finding the 1st root
Given
$\mathrm{X}^{3}-9.1 \cdot \mathrm{X}^{2}+25.2 \cdot \mathrm{X}-21.1=0$
Root1 : $=$ Find $(X) \quad$ Root1 $=1.595$
$\mathrm{X}:=3 \quad$ Note: A guess for finding the 2nd root
Given
$\mathrm{X}^{3}-9.1 \cdot \mathrm{X}^{2}+25.2 \cdot \mathrm{X}-21.1=0$
Root2 : $=$ Find $(\mathrm{X}) \quad$ Root2 $=2.83$
$X:=4 \quad$ Note: A guess for finding the 3rd root
Given
$\mathrm{X}^{3}-9.1 \cdot \mathrm{X}^{2}+25.2 \cdot \mathrm{X}-21.1=0$
Root3 : $=$ Find $(X) \quad$ Root $3=4.675$

Example 5: Finding Maxima and Minima of functions

First graph the function below so that the maxima/minima features are clear. A look at the graph will be helpful in making initial guesses.

This gives 31 points for X to form a graph.
$X:=0, .05 . .1 .5$
$F(X):=200 \cdot X \cdot \mathrm{e}^{-3.5 \cdot X}$

We can see that the curve reaches a maximum somewhere between $\mathrm{X}=0$ and $\mathrm{X}=$ 0.5 . We can use a SOLVE BLOCK to find the maximum. Recall that maxima and minima occur when the derivative equals 0 .

X :=0
Note that $\mathrm{F}(\mathrm{X})$ was first defined above.
Given
$\frac{\mathrm{d}}{\mathrm{dX}} \mathrm{F}(\mathrm{X})=0$

Xmax := Find (X)
$X \max =0.286$

Fmax :=F(Xmax)
Fmax $=21.022$
So the maximum occurs at $\mathrm{X}=0.286$ (this appears to agree with the graph above).

Now determine the value of F for Xmax.
The maximum value of F (this appears to agree with the graph above).

