Α

D

Е

F

н

1

G

2 EGR 120

3 Introduction to Engineering

4 File: Power Regression - statistics.xls

5

6 Power Regression using Microsoft Excel

7 Method: This method uses Excel's tool for regression analysis which determines the slope and intercept of straight line data.

8 A power equation has the general form: $y = bx^m$

В

9 Taking the log of both sides of the equation yields the equation: log(y) = mlog(x) + log(b)

С

10 The equation above is the equation of a straight line with both x and y on log scales.

11 Regression analysis performed on the log(x) data and the log(y) data will yield the slope, m, and the intercept, log(b).

12

13 Problem 3.8 - Plot R vs A and use regression to find a power formula that expresses R in terms of A (A is the independent variable)

14 Resistance vs Area for an Electrical Conductor

- 15
- 16 Measured data from textbook:

17	Area, A	Resistance, R			
18	(sq. mm)	(milliohms per meter			
19	0.021	505			
20	0.062	182			
21	0.202	55.3			
22	0.523	22.2			
23	1.008	11.3			
24	3.320	4.17			
25	7.290	1.75			

26

27 SUMMARY OUTPUT

28						
29	Regression Statistics					
30	Multiple R	0.99971082				
31	R Square	0.999421725				
32	Adjusted R	0.99930607				
33	Standard E	0.023119674				
34	Observatio	7				
35						
36	ANOVA					
37		df				
38	Regressior	1				
20	Pagidual	F				

Extra columns

for regression:						
log(A)	log(R)					
-1.678	2.703					
-1.208	2.260					
-0.695	1.743					
-0.281	1.346					
0.003	1.053					
0.521	0.620					
0.863	0.243					

Regression data for

straight line on graph:

formula: =C\$48*B19^C\$50

Perform power regression as follows:

- 1. Form columns for log(x) and log(y) data see above
- 2. Select Tools Data Analysis Regression from the menu (see Note below)
- Use the log(x) values for the independent variable and the log(y) values for the dependent variable. For the output range, specify the cell location for the upper left corner of the report.

<u>Note</u>: If Data Analysis is not listed under the Tools menu, first select Tools - Add-ins - Analysis Tool Pack

30	ANOVA					
37		df	SS	MS	F	Significance F
38	Regressior	1	4.618995074	4.618995	8641.399	2.7309E-09
39	Residual	5	0.002672597	0.000535		
40	Total	6	4.621667671			

