С Α В D F G Н J

- 2 EGR 120
- Introduction to Engineering
- File: Exponential Regression statistics.xls

5

Exponential Regression using Microsoft Excel

- Method: This method uses Excel's tool for regression analysis which determines the slope and intercept of straight line data.
- An exponential equation has the general form: $y = be^{mx}$
- Taking the natural log of both sides of the equation yields the equation: ln(y) = mx + ln(b)
- 10 The equation above is the equation of a straight line with y on a log scale and x on a linear scale.
- 11 Regression analysis performed on the x data and the ln(y) data will yield the slope, m, and the intercept, ln(b).

12

- 13 Problem 3.18 Plot C vs W and use regression to find an exponential formula of the form $y = be^{mx}$ (or $C = be^{mW}$)
- 14 Geiger Counter: Counts per second vs plate thickness

15

16 Measured data from textbook:

17	Plate Thickness	Geiger Counter				
18	W (mm)	C (counts per second)				
19	2.0	5500				
20	5.0	3700				
21	10.0	2550				
22	20.0	1300				
23	27.5	715				
24	32.5	470				

Extra column

In(C)

8.613

8.216

7.844

7.170

6.572

6.153

Regression data for

for regression: straight line on graph:

C = be ^{mv}
5018.4
3981.5
2707.2
1251.6
701.8
477.2

26

34

SUMMARY OUTPUT

27						
28	Regression Statistics					
29	Multiple R	0.997902337				
30	R Square	0.995809075				
31	Adjusted R Square	0.994761344				
32	Standard Error	0.069589815				
33	Observations	6				

Perform exponential regression as follows:

- 1. Form a column for ln(y) data see above
- 2. Select Tools Data Analysis Regression from the menu (see Note below)

formula: =B\$47*EXP(B\$43*A19)

3. Use the x values for the independent variable and the ln(y) values for the dependent variable. For the output range, specify the cell location for the upper left corner of the report.

Note: If Data Analysis is not listed under the Tools menu, first select Tools - Add-ins - Analysis Tool Pack

35 ANOVA

36		df	SS	MS	F	ignificance F
37	Regression	1	4.60275	4.60275157	950.4432	6.6E-06
38	Residual	4	0.01937	0.00484274		
39	Total	5	4.62212			

40									
41		Coefficients	andard Er	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%.	lpper 95.0%
42	Intercept	8.675157247	0.04943	175.486447	6.33E-09	8.537904	8.812411	8.537904	8.812411
43	X Variable 1	-0.07714813	0.0025	-30.8292587	6.6E-06	-0.084096	-0.0702	-0.084096	-0.0702
44									
45	In(b) =	8.675157247			Note: From	cell B30, R	Square =	0.995809	Good fit!
46	so $b = e^{\ln(b)}$							-	_
47	or $b = 5855.6$	3							
48									
49	m= -0.077	1			so $y = be^{mx}$	or	$C = 5856e^{-6}$	0.0771W	
50			1				-		

51 Form an xy graph using W = x-axis series, C = 1st series, and C = be^{mW} data = 2nd series. 52 Use a log scales for the y-axis and a linear scale for the x-axis. The data should fall in a straight line.

Show points only for the 1st series and line only for the 2nd series.

