Test \#3 Overview

Material Covered:

Homework \#5 and Homework \#6 - Chapter 12 (Laplace transforms and inverse Laplace Transforms)
Homework \#7 - Chapter 13 (Circuit analysis using Laplace transforms)
Sections 12.1-12.9, 13.1-13.5, 13.7 in Electric Circuits, 10 ${ }^{\text {th }}$ Edition, by Nilsson

Exam Materials:

- No calculators allowed (or at least no calculators like the TI-89 or TI-Inspire CAS that can find Laplace Transforms or perform Partial Fractions Expansion)
- Handout of Laplace Transform Properties and Common Laplace Transform Pairs provided (attached)
- No other formulas, books, etc allowed on the exam

Laplace Transforms and Inverse Laplace Transforms:

- Finding Laplace transforms:
- By definition (only for simple functions)
- No questions on convergence
- Using known transforms and properties (primary method for finding F(s))
- Find $F(s)$ if a graph of $f(t)$ is given
- Finding Inverse Laplace Transforms
- Partial Fractions Expansion (PFE)
- Use either of two methods to find PFE coefficients (your choice):
- residue method
- common denominator method
- Be sure that order of $\mathrm{N}(\mathrm{s})$ < order of $\mathrm{D}(\mathrm{s})$ before using PFE - if not use long division
- Complex roots - can be handled in two ways:
- quadratic factors - put complex denominator in the form $(s+a)^{2}+w^{2}-$ easiest method without a calculator
- complex linear roots - simplify as much as possible if not using a calculator
- Trigonometric identities provided if necessary.
- No problems on solving differential equations using Laplace Transforms

Circuit Analysis using Laplace Transforms

- Find initial conditions ($\mathrm{v}_{\mathrm{C}}(0)$ and $\mathrm{i}_{\mathrm{L}}(0)$ only) if not provided
- Draw the Laplace Transformed Circuit (know the models for each component)
- Use basic circuit analysis techniques - your choice of method generally
- Partial solution may be specified - such as find V(s) or I(s) - in simplified polynomial form

Transfer functions:

- Finding transfer functions $(\mathrm{H}(\mathrm{s})=\mathrm{Y}(\mathrm{s}) / \mathrm{X}(\mathrm{s}))$ for a given circuit
- Recall that transfer functions are always defined with zero initial conditions (so no sources in the models for L and C)
- Finding an output using a given transfer function $-\mathrm{Y}(\mathrm{s})=\mathrm{H}(\mathrm{s}) \mathrm{X}(\mathrm{s})$ so $\mathrm{y}(\mathrm{t})=\boldsymbol{\mathcal { L }}^{-1}\{\mathrm{H}(\mathrm{s}) \mathrm{X}(\mathrm{s})\}$
- Finding the impulse response for a given circuit or transfer function: impulse response $=\mathrm{h}(\mathrm{t})=\boldsymbol{L}^{-1}\{\mathrm{H}(\mathrm{s})\}$
- Finding the unit step response for a given circuit or transfer function: unit step response $=y(t)=\boldsymbol{L}^{-1}\{H(s) / s\}$

LAPLACE TRANSFORM PROPERTIES

1. Linearity:

$$
\mathcal{L}\{\mathrm{af}(\mathrm{t})\}=\mathrm{aF}(\mathrm{~s})
$$

2. Superposition:

$$
\mathcal{L}\left\{\mathrm{f}_{1}(\mathrm{t})+\mathrm{f}_{2}(\mathrm{t})\right\}=\mathrm{F}_{1}(\mathrm{~s})+\mathrm{F}_{2}(\mathrm{~s})
$$

3. Modulation:
$\mathcal{L}\left\{\mathrm{e}^{-\mathrm{at}} \mathrm{f}(\mathrm{t})\right\}=\mathrm{F}(\mathrm{s}+\mathrm{a})$
4. Time-Shifting:
$\mathcal{L}\{\mathrm{f}(\mathrm{t}-\tau) \mathrm{u}(\mathrm{t}-\tau)\}=\mathrm{e}^{-\mathrm{st} \mathrm{F}}(\mathrm{s})$
5. Scaling:

$$
\mathcal{L}\{\mathrm{f}(\mathrm{at})\}=\frac{1}{\mathrm{a}} \mathrm{~F}\left(\frac{\mathrm{~s}}{\mathrm{a}}\right)
$$

6. Real Differentiation: $\quad \mathcal{L}\left\{\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{f}(\mathrm{t})\right\}=\mathrm{sF}(\mathrm{s})-\mathrm{f}(0)$
7. Real Integration: $\quad \mathcal{L}\left\{\int_{0}^{\mathrm{t}} \mathrm{f}(\mathrm{t}) \mathrm{dt}\right\}=\frac{1}{\mathrm{~S}} \mathrm{~F}(\mathrm{~s})$
8. Complex Differentiation: $\mathcal{L}\{\mathrm{tf}(\mathrm{t})\}=-\frac{\mathrm{d}}{\mathrm{ds}} \mathrm{F}(\mathrm{s})$
9. Complex Integration: $\quad \boldsymbol{\mathcal { L }}\left\{\frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}}\right\}=\int_{\mathrm{s}}^{\infty} \mathrm{F}(\mathrm{s}) \mathrm{ds}$
10. Convolution:

$$
\mathcal{L}\{\mathrm{f}(\mathrm{t}) * \mathrm{~g}(\mathrm{t})\}=\mathrm{F}(\mathrm{~s}) \cdot \mathrm{G}(\mathrm{~s})
$$

COMMON LAPLACE TRANSFORM PAIRS

$\mathbf{f (t)}$	$\mathbf{F (s)}$
$\delta(t)$	$\frac{1}{2}$
$u(t)$	$\frac{1}{s}$
$t u(t)$	$\frac{1}{s^{2}}$
$e^{-a t u(t)}$	$\frac{1}{s+a}$
$t^{-a-a} u(t)$	$\frac{1}{(s+a)^{2}}$
$\cos (w t) u(t)$	$\frac{s}{s^{2}+w^{2}}$
$\sin (w t) u(t)$	$\frac{w}{s^{2}+w^{2}}$
$e^{-a t} \cos (w t) u(t)$	$\frac{s^{2}+a}{(s+a)^{2}+w^{2}}$
$e^{-a t} \sin (w t) u(t)$	$\frac{w}{(s+a)^{2}+w^{2}}$
$2 B e^{-a t} \cos (w t+\theta) u(t)$	$\frac{\bar{B}}{s+a-j w}+\frac{\bar{B}^{*}}{s+a+j w}, w h e r e \bar{B}=B \angle \theta$

