File: N272O3

Test #3 Overview

Material Covered:

Homework #5 and Homework #6 - Chapter 12 (Laplace transforms and inverse Laplace Transforms) Homework #7 - Chapter 13 (Circuit analysis using Laplace transforms) Sections 12.1-12.9, 13.1-13.5, 13.7 in *Electric Circuits*, 10th Edition, by Nilsson

Exam Materials:

- No calculators allowed (or at least no calculators like the TI-89 or TI-Inspire CAS that can find Laplace Transforms or perform Partial Fractions Expansion)
- Handout of Laplace Transform Properties and Common Laplace Transform Pairs provided (attached)
- No other formulas, books, etc allowed on the exam

Laplace Transforms and Inverse Laplace Transforms:

- Finding Laplace transforms:
 - By definition (only for simple functions)
 - No questions on convergence
 - Using known transforms and properties (primary method for finding F(s))
 - Find F(s) if a graph of f(t) is given
- Finding Inverse Laplace Transforms
 - Partial Fractions Expansion (PFE)
 - Use either of two methods to find PFE coefficients (your choice):
 - residue method
 - common denominator method
 - Be sure that order of N(s) < order of D(s) before using PFE if not use long division
 - Complex roots can be handled in two ways:
 - quadratic factors put complex denominator in the form $(s + a)^2 + w^2$ easiest method without a calculator
 - complex linear roots simplify as much as possible if not using a calculator
- Trigonometric identities provided if necessary.
- No problems on solving differential equations using Laplace Transforms

Circuit Analysis using Laplace Transforms

- Find initial conditions ($v_C(0)$ and $i_L(0)$ only) if not provided
- Draw the Laplace Transformed Circuit (know the models for each component)
- Use basic circuit analysis techniques your choice of method generally
- Partial solution may be specified such as find V(s) or I(s) in simplified polynomial form

Transfer functions:

- Finding transfer functions (H(s) = Y(s)/X(s)) for a given circuit
- Recall that transfer functions are always defined with zero initial conditions (so no sources in the models for L and C)
- Finding an output using a given transfer function -Y(s) = H(s)X(s) so $y(t) = \mathcal{L}^{-1}\{H(s)X(s)\}$
- Finding the impulse response for a given circuit or transfer function: impulse response = $h(t) = \mathcal{L}^{-1}\{H(s)\}$
- Finding the unit step response for a given circuit or transfer function: unit step response = $y(t) = \mathcal{L}^{-1}\{H(s)/s\}$

LAPLACE TRANSFORM PROPERTIES

1. Linearity: $\mathcal{L}\{af(t)\} = aF(s)$

2. **Superposition:** $\mathcal{L}\{f_1(t) + f_2(t)\} = F_1(s) + F_2(s)$

3. Modulation: $\mathcal{L}\lbrace e^{-at}f(t)\rbrace = F(s+a)$

4. <u>Time-Shifting:</u> $\mathcal{L}\{f(t-\tau)u(t-\tau)\} = e^{-s\tau}F(s)$

5. <u>Scaling:</u> $\mathcal{L}\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$

6. **Real Differentiation:** $2 \left\{ \frac{d}{dt} f(t) \right\} = sF(s) - f(0)$

7. **<u>Real Integration:</u>** $2\left\{\int_{0}^{t} f(t)dt\right\} = \frac{1}{s}F(s)$

8. <u>Complex Differentiation</u>: $\mathcal{L}\{tf(t)\} = -\frac{d}{ds}F(s)$

9. <u>Complex Integration</u>: $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s)ds$

10. **Convolution:** $\mathcal{L}\{f(t) * g(t)\} = F(s) \cdot G(s)$

COMMON LAPLACE TRANSFORM PAIRS

f(t)	F(s)
δ(t)	1
u(t)	$\frac{1}{s}$
tu(t)	$\frac{1}{s^2}$
e ^{-at} u(t)	$\frac{1}{s+a}$
te ^{-at} u(t)	$\frac{1}{(s+a)^2}$
cos(wt)u(t)	$\frac{s}{s^2 + w^2}$
sin(wt)u(t)	$\frac{w}{s^2 + w^2}$
e ^{-at} cos(wt)u(t)	$\frac{s+a}{\left(s+a\right)^2+w^2}$
e ^{-at} sin(wt)u(t)	$\frac{w}{(s+a)^2+w^2}$
2B e ^{-at} cos(wt+θ)u(t)	$\frac{\overline{B}}{s+a-jw} + \frac{\overline{B}^*}{s+a+jw}$, where $\overline{B} = B \angle \theta$