EGR 270 Fundamentals of Computer Engineering File: N270L8

Lab # 8

The ATmega328P (Arduino Nano) and Assembly Language Programming

Lab Format

- This is a **Individual Lab** so each student must design and test their own circuits.
- Students are free to assist each other in all labs.
- Each student must complete the Preliminary Work Section **<u>before</u>** lab begins. Preliminary Work will be checked in lab and will be part of the lab report grade.
- Each student must submit his or her own lab report.
- Lab reports will not be accepted until all required circuits have been demonstrated to the instructor.

A. **Objectives**

The objectives of this laboratory are introduce the student to:

- assembly language programming
- Atmel Studio 7 (for assembling and simulating programs)
- ATmega328P Microcontroller (Arduino Nano)
- Breadboarding the Arduino Nano and using it to control LEDs and 7-segment displays

B. Materials

Breadboard	Atmel Studio 7
5V Power Supply	Common-anode 7-segment display (LDS-3221 or other)
Arduino Nano	Seven 220 ohm resistors

C. <u>Reference</u>

Refer to the following items (available on the instructor's web page):

- Atmel Studio Tutorial (PowerPoint)
- Computer Architecture, Microprocessors and Assembly Language (PowerPoint)

D. Introduction

Refer to the references above for more detail on the items shown in this section.

In this lab we will be using AVR Assembly Language to program the ATmega328P microcontroller on the Arduino Nano. The pin numbers on the Arduino are different from the pin numbers on the ATmega328P, so a *Pin Mapping Table* is shown below.

Table 1: Arduino Nano – Atmega328P Pin Mapping Table

ATmega328P *	Nano	Pin	O) 8	Pin	Nano	ATmega328P *
PD1 (TXD)	D1 (TX1)	1		30	VIN	VIN
PD0 (RXD)	D0 (RX0)	2	ARDUINO SA	29	GND	GND
RST	RST	3	0 0 U3.1 0 20	28	RST	RST
GND	GND	4		27	5V	VCC
PD2 (INT0)	D2	5	S S S S S S S S S S S S S S S S S S S	26	A 7	ADC7
PD3 (INT1)	D3	6	C DI Z RESET	25	A6	ADC6
PD4 (XCK)	D4	7		24	A5	PC5 (SCL)
PD5 (OC0B)	D5	8	0. E	23	A4	PC4 (SDA)
PD6 (OC0A)	D6	9	() II (N) (// 200	22	A3	PC3 (ADC3)
PD7 (AIN1)	D7	10	6 21 Mar 4 5 6	21	A2	PC2 (ADC2)
PB0 (CLK0)	D8	11	15 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20	A1	PC1 (ADC1)
PB1 (OC1A)	D9	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19	A0	PC0 (ADC0)
PB2 (OC2A)	D10	13	USA 2011	18	AREF	AREF
PB3 (MOSI)	D11	14		17	3V3	
PB4 (MISO)	D12	15		16	D13	PB5 (SCK)

* Many pins have additional functions not listed

Output Ports on the ATmega328P

Recall that the outputs are arranged into 3 ports (Port D, Port B, Port C):

Output Port	Notes
Port D (in Yellow above)	Avoid PD0,PD1 (used for Rx,Tx)
	6 free digital pins (PD2-PD7)
Port B (in Blue above)	5 free digital pins (PB0-PB4)
Port C (in Green above)	8 free analog pins (A0-A7) - not used in this course

There are 11 free digital pins to use for this lab: PD2-PD7, PB0-PB4

Lab 8 Circuits and Programs

In this lab two circuits will be constructed and two assembly language programs will be used with the circuits.

- Circuit 1 Blink an LED on pin D8 (PB0)
- Circuit 2 Display the 7 digits of your student ID in order on a 7-segment display

These circuits and programs will be discussed on the following pages.

Lab 8 Circuit 1: PB0 (D8) is used in Circuit 1 below. Note that we could have used any of the 11 free digital pins.

Lab 8 Program 1: This program has already written and is discussed in *Atmel Studio Tutorial* Download this program (Blink LED on Arduino Nano pin D8 at 1 Hz) from the course website.

1	; EGR 2	70 - Lab 8 -	- Circui	t 1
2	; Proje	t name: Bl	link LED	on Arduino Nano pin D8 at 1 Hz
3	; Create	ed: 3/10/20>	x 2:17:	17 PM
4	; Autho	• : John Doe	2	
5				
6	.DEF dly	/1 = R17		// Assign the name dly1 to R17
7	.DEF dly	/2 = R18		
8	.DEF dly	/3 = R19		
9				
10	.ORG	0x0000		// Store program at address 0x0000 in flash memory
11	RJMP	main		// Program begins at the main label
12				
13	main:	-16 0.55		(/ hand the impedate value Duff (all bits 1) into ensister 16
14	LUI	r16, 0xFF		// Load the Immedate Value WXFF (all bits 1) into register 16
15	001	DDKB, FI6		// Set Data Direction Register B to output for all pins
17	loon			
18	SBT	Ports 0		// Set bit 0 of PortB (i.e. turn on the LED)
10	301	Porto, o		// Note: PB0 mars to ni D8 on the Arduino Nano
20				// Defer to Din Manning Table in the class notes
21	RCALL	delay 500ms	-	// Call delay 500ms subnorgram to keen LED lit for 0.5s
22	CBT	PortB. 0	-	// Clear bit 0 of PortB. (i.e. turn off the LED)
23	RCALL	delay 500ms		// Call delay 500ms subnorgram to keen LED off for 0.5s
24	RJMP	loop		// Loop again
25				
26	// Eve	ything bene	eath is	part of the delay subprogram (or subroutine)
27	// Note	e that 8 bit	t regist	ers hold a max value of 255 (unsigned) so creating a 0.5 s delay requires using a triple nested loop.
28	Delay_5	00ms:		; For CLK(CPU) = 16 MHz (clock rate for Arduino Nano) - Lab test showed 60 blinks in 1 minute test
29				; T = 1/16MHz = 62.5 ns. Delay = 62.5ns(8,000,000 cycles) = 0.5s
30	LDI	dly1,	64	; One clock cycle: outer loop: 64 * 125000 cycles = 8,000,000 cycles
31	Delay1:			
32	LDI	dly2,	125	; One clock cycle: middle loop: 125 * 1000 cycles = 125000 cycles
33	Delay2:			
34	LDI	d1y3,	250	; One clock cycle: inside loop: 4 cycles * 250 = 1000 cycles
35	Delay3:	41		a final share and a
30	DEC	alys		; One clock cycle
57	NOP	Dolou?		; One Clock Cycle
20	DKIN	Delays		; We clock cycles when jumping to berays, I clock when continuing to bec
10	DEC	d1v2		· One clock cycle
40	BRN	= Delav2		, one clock cycles when jumping to Delay2, 1 clock when continuing to DEC
42	D NIN	- DCIUyz		, the clock cycles much jumping to beings; I clock much contributing to bee
43	DEC	dlv1		: One clock Cycle
44	BRNI	Delav1		; Two clock cycles when jumping to Delay1, 1 clock when continuing to RET
45	RET			; Return to main (end of subprogram)

Lab 8 Circuit 2: Port B (PB0) and Port D (PD2-PD7) will be used in Lab 8 to connect a 7-segment display to the Arduino Nano. Note that 7 of the 11 free digital pins will be used.

Lab 8 Program 2: Write an assembly language program for the Arduino Nano that will display the 7 digits of your student ID in order (and repeat). Each digit should be lit for 1 second. Assume that Circuit 2 above will be used and that a common-anode display will be used.

Before this program can be written it is necessary to determine the PortB and PortD values that must be sent to the Arduino Nano to light each segment. Table 2 below can be used to determine these values. One example has been provided below. In order to light the digit 4, segments b,c,f and g should be ON (0). Segments a, d, and e should be OFF (1). You will need to complete the rest of the table as part of the Preliminary Work for this lab.

Table 2: Output Port – 7-segment Display Table	<u>e</u>
--	----------

	Segment (output)							PortB	PortD	PortB	PortD
Digit	а	b	c	d	e	f	g	(binary)	(binary)	(hex)	(hex)
	PB0	PD7	PD6	PD5	PD4	PD3	PD2	0b000000?	0b00000??	0x??	0x??
0											
1											
2											
3											
4	1	0	0	1	1	0	0	0b0000001	0b00110000	0x01	0x30
5											
6											
7											
8											
9											

Note that 0 is used for any unused output port bits below.

Possible Outline for Program 2

- Detailed comments
- Define PortB and PortD as all outputs.
- Add sections (similar to the code below for digit 4) for each digit in Student ID
- Add Delay_500ms subprogram
- Loop back to first digit

Four:

```
bcdefgxx
                         // Bits PD1-PD0 unused
11
                         // Light segments b,c,f,g
        r16, 0b00110000
 LDI
        PortD, r16
 OUT
                         // Bits PB7-PB1 unused
11
               xxxxxxa
 LDI
        r16, 0b0000001
                         // Segment a is off (1)
 OUT
        PortB, r16
        delay 500ms
 RCALL
        delay 500ms
 RCALL
```

E. Preliminary Work

- 1. <u>**Circuit #1**</u>: Include a copy of Circuit #1.
- 2. <u>Program #1</u>: Download Program #1 from the course website. Include a copy of Program #1.
- 3. **<u>Circuit #2</u>**: Include a copy of Circuit #2.
- 4. <u>State Diagram for Program #2</u>: List the Student ID being used and include a state diagram for Program #2.
- 5. <u>**Pinout**</u>: Include a pinout for the 7-segment display to be used in lab.
- 6. <u>Table 2: Output Port 7-segment Display Table</u>: Include a completed Table 2.
- 7. **Program #2**: Include a printout of Program #2. The program should contain an initial block of comments with name, course, lab number, date, and a description of the program. Additionally, include comments throughout the program.
- 8. <u>Simulation for Program #2</u>: Use Atmel Studio 7 to simulate Program #2. In particular,
 - After you begin *Debug Start Debugging and Break*, use *Debug Windows I/O* and then open windows to display I/O Port (PORTB) and I/O Port (PORTD). (Use Ctrl key to select multiple ports.)
 - After the instructions to load PortB and PortD have been executed for each digit, take a screen shot showing the code (including your name) and the PortB and PortD windows. Verify that values for PortB and PortD are correct. Include screen shots for at least 3 different digits in your report.
 - An example simulation for digit 4 is shown on the following page.

<u>Simulation for Digit 4</u>: The simulation below verifies that PortB = 0b00000001 = 0x01 and PortD = 00110000 = 0x30 as shown in Table 2. The simulation also shows that DDRB = DDRD = 0b11111111 = 0xFF (all outputs).

; Name: ; EGR 27 ; Date: ; Descr:	(your name) 70 Lab #8 (list date of la iption: Program	b) to display the	following stu	dent ID	(xxxx	xxx) on	a commo	on-anode		
				I/O						- 0
					Filter:			-	<u>_</u>	
					N	ame		Value		
					nalog C	omparato	r (AC)			
					nalog-to	o-Digital (Convert			
					PU Kegi	STERS (CPU	<i>1</i>)			
				🕀 🛄 E	xternal li	nterrupts ((EXINT)			
				1/O	O Port (PORTB)				
				1/0 I/	O Port (PORTC)				
				1/0 I/	O Port (PORTD)				
Four:				Nar	ne	Address	Value		Bits	
//	bcdefgxx	// Bits PD1-PD	0 unused	I/O P	INB	0x23	0x00			
LDI	r16, 0b00110000	// Light segme	nts b,c,f,g	iio D	DRB	0x24	0xFF			
OUT	PortD, r16	(/		I/O P	ORTB	0x25	0x01			
	xxxxxxxa	// Bits PB7-PB	s off (1)	1/0 P		0x29	0x30			
OUT	PortB, r16	// Deginerie a 1		1/0 P	ORTD	0x2A 0x2B	0x77			
RCALL	delay_500ms					2022	2022			
RCALL	delay_500ms									

External Tools		? ×
Me <u>n</u> u contents:		
Send to Arduino		Add
		<u>D</u> elete
		Move <u>U</u> p
		Move Do <u>w</u> n
<u>T</u> itle:	Send to Arduino	
<u>C</u> ommand:	C:\Program Files (x86)\Arduino\hardv	vare\tools\
Arguments:	:mega328p -c arduino -P <mark>COM5</mark> -b <mark>11</mark>	5200 - U fla:
Initial directory:		
Use Output window	<u>Prompt for argumen</u>	ts
Treat output a <u>s</u> Unicod	le 🛛 🗹 Close on <u>e</u> xit	
	OK Cancel	App <u>ly</u>

F. Laboratory Work

1. Program#1/Circuit #1

- A. Construct Circuit #1 and connect the Arduino Nano to the computer using the USB cable.
- B. Download Program #1. Open the project with Atmel Studio 7 and build the program. Correct any errors.
- C. If any changes were made to Circuit #1 or Program #1 as shown in the Preliminary Work, record the changes and the reason for the changes.
- D. Use *Tools Send to Arduino* to send the hex file to the Arduino Nano. You may need to press the reset button on the Nano to start the program.
 Note: Before doing this you may need to change some settings under Tools External Tools (see the
 - window on the previous page)
 - Change the baud rate to 57600 for the Arduino Nano (the Arduino UNO uses a rate of 115200).
 - Change the COM port number to the one assigned when you connected the Arduino Nano to the computer using the USB cable. To see what COM port was assigned, search in the Windows toolbar for Device Manager. Open Device Manager and look under Ports.)
- E. Count the number of times that the LED blinks in 60 seconds. Record the value and include it in your report. Calculate the % error from the expected value of 60 blinks in 60 seconds.
- F. Demonstrate proper circuit operation to the instructor.

2. Program#1/Circuit #2

- A. Construct Circuit #2 and connect the Arduino Nano to the computer using the USB cable.
- B. Use Atmel Studio 7 to create a project and enter your code (if not already done in Preliminary Work). Build the project. Correct any errors.
- C. If any changes were made to Circuit #2 or Program #2 as shown in the Preliminary Work, record the changes and the reason for the changes.
- D. Use *Tools Send to Arduino* to send the hex file to the Arduino Nano. You may need to press the reset button on the Nano to start the program.
- E. Verify that the student ID is correctly displayed and that it repeats.
- F. What happens if you press the reset button on the Nano while the program is running? Record the result.
- G. Demonstrate proper circuit operation to the instructor.

F. **<u>Report</u>**

Remember that each lab report should have the following four sections. Also see additional notes below.

<u>Title Page</u>

Preliminary Work (include instructions)

Lab Results

- Include all measured results.
- Include step numbers and titles or headings that make it clear what is being shown.

Discussion/Conclusion

- Discuss each circuit/program tested in lab.
- Compare the implementation of a sequential circuit:
 - o Using JK flip-flops (Lab 6)
 - Using VHDL and FPGAs (Lab 7)
 - Using a microcontroller and assembly language (Lab 8)
 - Compare the simulation of each sequential circuit above:
 - o Lab 6 Simulation using PSPICE
 - Lab 7 Simulation using Aldec Active-HDL
 - Lab 8 Simulation using Atmel Studio 7