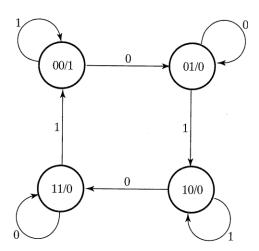
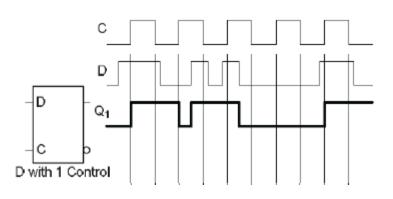
EGR 270 Fundamentals of Computer Engineering File: N270H7


Homework Assignment #7

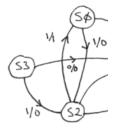
<u>Reading Assignment</u>:

Chapter 4 in the textbook Logic and Computer Design Fundamentals, 5th Edition by Mano Online supplement "Design and Analysis using JK and T Flip-Flops" (http://wps.pearsoned.com/ecs_mano_lcdf_5/)

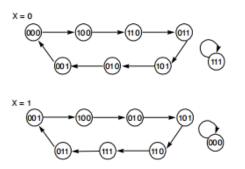

Problem Assignment:

- 1) Chapter 4 problems: 4, 5, 7, 8, 10, 11, 13
- 2) Problems 4 and 5 in the online supplement "Design and Analysis using JK and T Flip-Flops." These problems are also shown below. Note: Problem 4 should refer to the figure shown below, not Figure 6-40, in the text.
 - *Design a sequential circuit for the state diagram given in Figure 6-40 of the text (see Reference 1) using JK flip-flops.
 - 5. *Design a sequential circuit with two JK flip-flops A and B and two inputs E and X. If E = 0, the circuit remains in the same state, regardless of the value of X. When E = 1 and X = 1, the circuit goes through the state transitions from 00 to 01 to 10 to 11, back to 00, and then repeats. When E = 1 and X = 0, the circuit goes through the state transitions from 00 to 1 to 10 to 01, back to 00, and then repeats.

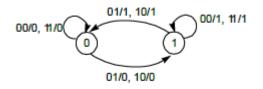
Selected Answers (Partial Solutions):


4-4)

4-5)	
------	--

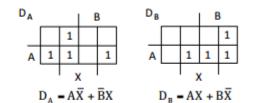

- S0 00 S1 - 01
 - S2 10
 - S3 11

Partial state diagram (Mealy model) shown below:



Present state			Input	Next state		
A	в	С	x	A	B	с
0	0	0	0	1	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	1	0	1
0	1	1	0	1	0	1
0	1	1	1	0	0	1
1	0	0	0	1	1	0
1	0	0	1	0	1	0
1	0	1	0	0	1	0
1	0	1	1	1	1	0
1	1	0	0	0	1	1

State diagram is the combination of the above two diagrams.


4-8)

Format: XY/S

4-13.*

Present state		t Input		Next	
A	В	x	A	В	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	0	0	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	0	1	

Logic diagram not given.

Online Supplement Problem 4) JA = KA = XB, JB = X', KB = XOnline Supplement Problem 5) JA = KA = EXB + EX'B', JB = KB = E