EGR 261 Signals and Systems File: Partial Fractions

Partial Fraction Expansion

Examples are provided below for performing Partial Fraction Expansion (PFE) using the following methods:

- 1) by hand
- 2) using the TI-85 or TI-86 calculator
- 3) using the HP-48G or HP-48GX calculator
- 4) using the TI-89 or TI-92 calculator

Case 1: Functions with repeated linear roots

Consider the following example:

$$F(s) = \frac{6s}{(s+1)(s+2)^2}$$

F(s) should be decomposed for Partial Fraction Expansion as follows:

$$F(s) = \frac{6s}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2}$$

A) Find A, B, and C by hand:

Using the residue method:

$$A = (s+1)F(s)\Big|_{s=-1} = \frac{6s}{(s+2)}\Big|_{s=-1} = \frac{-6}{1^2} = -6$$

$$C = (s+2)^2 F(s)\Big|_{s=-2} = \frac{6s}{(s+1)}\Big|_{s=-2} = \frac{-12}{-1} = 12$$

$$B = \frac{d}{ds}(s+2)^2 F(s)\Big|_{s=-2} = \frac{d}{ds}\left[\frac{6s}{(s+1)}\right]\Big|_{s=-2} = \frac{6}{(s+1)^2}\Big|_{s=-2} = \frac{6}{(-1)^2} = 6$$

so
$$F(s) = \frac{6s}{(s+1)(s+2)^2} = \frac{-6}{s+1} + \frac{6}{s+2} + \frac{12}{(s+2)^2}$$
 and $\underline{f(t) = [-6e^{-t} + (6+12t)e^{-2t}]u(t)}$

B) Find A, B, and C using the TI-85 or TI-86:

$$F(s) = \frac{6s}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2}$$

Use the TI-85 or TI-86 to determine A, B, and C as follows:

Run the program PARTIALF (Select PROGRAM - NAMES - PARTIALF)

(Calculator prompts are shown below in upper case *ITALICS* and user inputs are shown **BOLD**)

NUMBER OF DISTINCT LINEAR FACTORS 2 NUMBER OF DISTINCT QUADRATIC FACTORS 0 ENTER COEFFICIENTS AND ORDER OF EACH LINEAR FACTOR BY DESCENDING POWERS. **COEFFICIENTS OF LINEAR FACTOR NUMBER 1** 1 1 **ORDER OF LINEAR FACTOR NUMBER 2** 1 **COEFFICIENTS OF LINEAR FACTOR NUMBER 2** 1 2 **ORDER OF LINEAR FACTOR NUMBER 2** 2 ENTER DEGREE OF NUMERATOR 1 ENTER COEFFICIENTS OF NUMERATOR BY DESCENDING POWERS 6 0

The result is stored in LIST under the variable name CONST (Select LIST - NAMES - CONST)

{ -6 6 12 }

so $F(s) = \frac{6s}{(s+1)(s+2)^2} = \frac{-6}{s+1} + \frac{6}{s+2} + \frac{12}{(s+2)^2}$ and $f(t) = [-6e^{-t} + (6+12t)e^{-2t}]u(t)$

C) Find A, B, and C using the HP-48G or HP-48GX:

$$F(s) = \frac{6s}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2}$$

Use the HP-48G or HP-48GX to determine A, B, and C as follows:

1. Load the information onto the stack as follows:

Stack Contents	Comments
{6 0}	Coefficients in the numerator of F(s)
{1 1}	Coefficients for 1 st factor in denominator
1	Power to which the 1 st factor is raised
{1 2}	Coefficients for 2 nd factor in denominator
2	Power to which the 2 nd factor is raised
2	The total number of factors in the denominator

- 2. Run the program PARTIALF (located in the directory BOBM).
- 3. The results will now appear on the stack (in the same order as the factors were entered). $\{-6 \quad 6 \quad 12\}$

so
$$F(s) = \frac{6s}{(s+1)(s+2)^2} = \frac{-6}{s+1} + \frac{6}{s+2} + \frac{12}{(s+2)^2}$$
 and $f(t) = [-6e^{-t} + (6+12t)e^{-2t}]u(t)$

Case 2: Functions with complex roots

If a function F(s) has a complex pole (i.e., a complex root in the denominator), it can be handled in two ways:

- 1) By keeping the complex roots in the form of a quadratic
- 2) By finding the complex roots and using complex numbers to evaluate the coefficients

<u>Example</u>: Both methods will be illustrated using the following example. Note that the quadratic terms has complex roots.

$$F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)}$$

Method 1: Quadratic factors in F(s)

F(s) should be decomposed for Partial Fraction Expansion as follows:

$$F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{A}{s + 1} + \frac{Bs + C}{s^2 + 2s + 17}$$

A) Find A, B, and C by hand (for the quadratic factor method):

Combining the terms on the right with a common denominator and then equating numerators yields: $A(s^2 + 2s + 17) + (Bs + C)(s + 1) = 5s^2 - 6s + 21$

Equating s ² terms:	A + B = 5		A = 2
Equating s terms:	2A + B + C = -6	yields {	B = 3
Equating constants:	17A + C = 21		C = -13

so
$$F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{2}{s + 1} + \frac{3s - 13}{s^2 + 2s + 17}$$

now manipulating the quadratic term into the form for decaying cosine and sine terms:

$$F(s) = \frac{2}{s+1} + \frac{3(s+1)}{(s+1)^2 + 4^2} + \frac{-4(4)}{(s+1)^2 + 4^2}$$

so $f(t) = e^{-t} [2 + 3\cos(4t) - 4\sin(4t)] u(t)$

The two sinusoidal terms may be combined if desired using the following identity:

Acos(wt) + Bsin(wt) =
$$\sqrt{A^2 + B^2} \cos\left(wt - \tan^{-1}\left(\frac{B}{A}\right)\right)$$

(or convert (A, -B) to polar form)

so
$$f(t) = e^{-t} [2 + 5\cos(4t + 53.13^\circ)] u(t)$$

B) Find A, B, and C using the TI-85 or TI-86 (for the quadratic factor method)

F(s) should be decomposed for Partial Fraction Expansion as follows:

 $F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{A}{s + 1} + \frac{Bs + C}{s^2 + 2s + 17}$

Use the TI-85 to determine A, B, and C as follows:

Run the program PARTIALF (Select PROGRAM - NAMES - PARTIALF) (Calculator prompts are shown below in upper case *ITALICS* and user inputs are shown **BOLD**)

NUMBER OF DISTINCT LINEAR FACTORS 1 NUMBER OF DISTINCT OUADRATIC FACTORS 1 ENTER COEFFICIENTS AND ORDER OF EACH LINEAR FACTOR BY DESCENDING POWERS. **COEFFICIENTS OF LINEAR FACTOR NUMBER 1** 1 1 ORDER OF LINEAR FACTOR NUMBER 1 1 ENTER COEFFICIENTS AND ORDER OF QUADRATIC FACTORS BY DESCENDING POWERS. COEFFICIENTS OF OUADRATIC FACTOR NUMBER 1 1 2 17 **ORDER OF QUADRATIC FACTOR NUMBER 1** 1 ENTER DEGREE OF NUMERATOR 2 ENTER COEFFICIENTS OF NUMERATOR BY DESCENDING POWERS 5 -6 21

The result is stored in LIST under the variable name CONST (Select LIST - NAMES - CONST)

{2.0000 3.0000 -13.0000}

so $F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{2}{s + 1} + \frac{3s - 13}{s^2 + 2s + 17}$

so $f(t) = e^{-t} [2 + 3\cos(4t) - 4\sin(4t)]u(t)$ or $f(t) = e^{-t} [2 + 5\cos(4t + 53.13^{\circ})]u(t)$ (see above for details on finding f(t) from F(s))

C) Find A, B, and C using the HP-48G or HP-48GX (for the quadratic factor method) F(s) should be decomposed for Partial Fraction Expansion as follows: $F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{A}{s + 1} + \frac{Bs + C}{s^2 + 2s + 17}$ Use the HP-48 to determine A, B, and C as follows:

Stack Contents	Comments
{5 -6 21}	Coefficients in the numerator of F(s)
{1 1}	Coefficients for 1 st factor in denominator
1	Power to which the 1 st factor is raised
{1 2 17}	Coefficients for 2 nd factor in denominator
1	Power to which the 2^{nd} factor is raised
2	The total number of factors in the denominator

1. Load the information onto the stack as follows:

- 3. Run the program PARTIALF (located in the directory BOBM so use 2nd-HOME-VAR-BOBM).
- 3. The results will now appear on the stack (in the same order as the factors were entered). $\{2 \ 3 \ -13\}$

so
$$F(s) = \frac{5s^2 - 6s + 21}{(s+1)(s^2 + 2s + 17)} = \frac{2}{s+1} + \frac{3s - 13}{s^2 + 2s + 17}$$

so $f(t) = e^{-t}[2 + 3\cos(4t) - 4\sin(4t)]u(t)$ or $f(t) = e^{-t}[2 + 5\cos(4t + 53.13^\circ)]u(t)$ (see above for details on finding f(t) from F(s))

Method 2: Complex roots in F(s)

Note that the roots of $(s^2 + 2s + 17)$ are s_1 , $s_2 = \alpha \pm jw = -1 \pm j4$

so F(s) =
$$\frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)}$$
 = $\frac{5s^2 - 6s + 21}{(s + 1)(s + 1 - j4)(s + 1 + j4)}$

A) Find A, B, and C by hand (for the complex root method):

F(s) should be decomposed for Partial Fraction Expansion as follows:

$$F(s) = \frac{A}{s+1} + \frac{\overline{B}}{s+1-j4} + \frac{\overline{B}^*}{s+1+j4} \text{ where } \overline{B} \text{ is a complex number}$$

and \overline{B}^* is the conjugate of \overline{B} .

The inverse transform of the two terms with complex roots will yield a single time-domain term of the form $2\overline{\mathbf{B}} = 2B/\theta = 2Be^{\alpha t}\cos(wt + \theta)$

Using the Residue Theorem:

A =
$$(s + 1)F(s)|_{s=-1} = \frac{5s^2 - 6s + 21}{(s^2 + 2s + 17)}|_{s=-1} = \frac{32}{16} = 2$$

$$\overline{\mathbf{B}} = (s + 1 - j4)F(s)\Big|_{s = -1 + j4} = \frac{5s^2 - 6s + 21}{(s + 1)(s + 1 + j4)}\Big|_{s = -1 + j4}$$
$$= \frac{5(-1,4)^2 - 6(-1,4) + 21}{(-1 + j4 + 1)(-1 + j4 + 1 + j4)} = 2.5 \frac{/53.13^\circ}{/53.13^\circ}$$

It is not necessary to also find $\overline{\mathbf{B}}^*$, but doing so here illustrates the conjugate relationship.

$$\overline{\mathbf{B}}^{*} = (s + 1 + j4)F(s)\Big|_{s = -1 - j4} = \frac{5s^{2} - 6s + 21}{(s + 1)(s + 1 - j4)}\Big|_{s = -1 - j4}$$
$$= \frac{5(-1, -4)^{2} - 6(-1, -4) + 21}{(-1 - j4 + 1)(-1 - j4 + 1 - j4)} = 2.5 \underline{/-53.13^{\circ}}$$

So, $f(t) = 2e^{-t}u(t) + 2B/\theta = 2e^{-t}u(t) + 5/53.13^{\circ}$

$$f(t) = \left[2e^{-t} + 5e^{-t}\cos(4t + 53.13^{\circ})\right]u(t)$$

This can be broken up into separate sine and cosine terms using $\cos(wt + \theta) = \cos(\theta)\cos(wt) - \sin(\theta)\sin(wt)$

(or convert (R,
$$\underline{/\theta}$$
) to (A, -B))

so $f(t) = [2e^{-t} + 5e^{-t}[\cos(53.13^\circ)\cos(4t) - \sin(53.13^\circ)\sin(4t)]]u(t)$

 $f(t) = \left[2e^{-t} + e^{-t}\left[4\cos(4t) - 3\sin(4t)\right]\right]u(t)$

B) <u>Find A, B, and C using the TI-85 or TI-86 (for the complex root method)</u> F(s) should be decomposed for Partial Fraction Expansion as follows:

 $F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{A}{s + 1} + \frac{\overline{B}}{s + 1 - j4} + \frac{\overline{B}^*}{s + 1 + j4}$

Use the TI-85 to determine A, $\overline{\mathbf{B}}$, and $\overline{\mathbf{B}}^*$ as follows:

Run the program PARTIALF (Select PROGRAM - NAMES - PARTIALF) (Calculator prompts are shown below in upper case *ITALICS* and user inputs are shown **BOLD**)

NUMBER OF DISTINCT LINEAR FACTORS	3
NUMBER OF DISTINCT QUADRATIC FACTORS	0
ENTER COEFFICIENTS AND ORDER OF EACH LIN	EAR FACTOR BY DESCENDING
POWERS.	
COEFFICIENTS OF LINEAR FACTOR NUMBER 1	1
	1
ORDER OF LINEAR FACTOR NUMBER 1	1
COEFFICIENTS OF LINEAR FACTOR NUMBER 2	1

$$\{(2.0 \ \underline{/0.00}) \ (2.5 \ \underline{/53.13}) \ (2.5 \ \underline{/-53.13}) \}$$

so
$$f(t) = \left[2e^{-t} + 5e^{-t}\cos(4t + 53.13^{\circ})\right]u(t) \text{ or } f(t) = \left[2e^{-t} + e^{-t}\left[4\cos(4t) - 3\sin(4t)\right]\right]u(t)$$
(see above for details on finding f(t) from F(s))

C) Find A, B, and C using the HP-48G or HP-48GX (for the complex root method)

F(s) should be decomposed for Partial Fraction Expansion as follows:

$$F(s) = \frac{5s^2 - 6s + 21}{(s + 1)(s^2 + 2s + 17)} = \frac{A}{s + 1} + \frac{\overline{B}}{s + 1 - j4} + \frac{\overline{B}^*}{s + 1 - j4}$$

Use the HP-48 to determine A, $\overline{\mathbf{B}}$, and $\overline{\mathbf{B}}^*$ as follows:

1. Load the information onto the stack as follows:

Stack Contents	Comments
{5 -6 21}	Coefficients in the numerator of F(s)
{1 1}	Coefficients for 1 st factor in denominator
1	Power to which the 1 st factor is raised
$\{1 \ (1, -4)\}$	Coefficients for 2 nd factor in denominator
1	Power to which the 2^{nd} factor is raised
$\{1 \ (1, 4)\}$	Coefficients for 3 rd factor in denominator
1	Power to which the 3 rd factor is raised
3	The total number of factors in the denominator

- 2. Run the program PARTIALF (located in the directory BOBM).
- 3. The results will now appear on the stack (in the same order as the factors were entered). $\{(2,0) \ (2.5/-53.13) \ (2.5/+53.13) \}$

$$\int f(t) = \left[2e^{-t} + 5e^{-t}\cos(4t + 53.13^{\circ})\right]u(t) \quad \text{or} \quad f(t) = \left[2e^{-t} + e^{-t}\left[4\cos(4t) - 3\sin(4t)\right]\right]u(t)$$

(see above for details on finding f(t) from F(s))

Transferring the Partial Fractions Expansion program between calculators

TI-85 or TI-86

- 1) Connect the two calculators with a cable
- 2) On the receiving calculator, select 2^{nd} *LINK RECV*
- 3) On the sending calculator, select
 - 2nd LINK SEND PRGM

then either select the desired programs or press *ALL*+ to select all programs then select *XMIT*

HP-48G or HP-48GX

- 1) Line up the arrows on the top each calculator corresponding to the infared port
- 2) On the receiving calculator, select *HOME* to insure that the calculator is in the HOME directory Then select *I/O* and then *GET FROM HP 48*
- 3) On the sending calculator, select HOME Then select *I/O* and then *SEND TO HP 48*Then select *EDIT - VAR - BOBM - ENTER* (this selects the entire BobMaynard directory, including all subprograms, for transfer) Then select *SEND*

Reference:The Partial Fractions Expansion program for both the TI and HP calculators waswritten by:Bob MaynardTidewater Community College Math DepartmentPhone:822-7174email:tcmaynr@tcc.edu

Partial Fractions Decomposition with the TI-89/TI-92

- 1) From the **Algebra** pull down menu (**F2**) select **3:expand**(either by using the cursor key to highlight the function then pressing enter, or entering **3** on the numeric keypad.
- 2) Enter the rational expression you wish to perform partial fraction decomposition on. CAUTION: be sure to use parentheses as needed to ensure proper grouping of terms in the numerator and denominator.
- 3) Close the **expand**(function with a right parenthesis.
- 4) Press enter.

Example:

To perform partial fraction decomposition of the expression

$$\frac{s+2}{s\cdot(s+1)^3}$$

1) Select the expand function

2) Enter $(s+2)/(s^*(s+1)^3)$

$$expand((s + 2)/(s^*(s + 1)^3))$$

- 3) Close the parentheses on the expand function $expand((s + 2)/(s^*(s + 1)^3))$
- 4) Press Enter. The calculator will display the result

$$\frac{-2}{s+1} + \frac{-2}{(s+1)^2} + \frac{-1}{(s+1)^3} + \frac{2}{s}$$