SAMPLE COMputer Solution
Problem 2.C2 A. $750-16$ crate is supported by The rope-and-pulley arrangement shown. Write o computer program which con be wed to determine, for a given value of β, the magnitude and direction of the force. F which should be exerted on the free end of the rope. Use this program to. calculate F and $\&$ for values of β from α to 30° at 5° intervals.

Solution:
Free Body Digition: (laser pulley)

$$
{ }^{2 \bar{F}} \underset{\sim}{2}:{ }^{2} \bar{F}
$$

$$
750.16
$$

$$
\begin{array}{r}
\Sigma F_{x}=0=F \cos \alpha-2 F \sin \beta \\
\cos \alpha=2 \sin \beta \\
\alpha=\cos ^{-1}(2 \sin \beta) \\
\sum F_{y}=0=F \sin \alpha+2 F \cos \beta-750 \\
F(\sin \alpha+2 \cos \beta)=750 \\
F=\frac{750}{\sin \alpha+2 \cos \beta}
\end{array}
$$

Now write a computer program to solve the 2 boxed equations above for $\beta=0$ to 30° in 5° increments.

MatLab program:

Editor - F:ICourses\Egr140MatLab\EGR140_Sample.m

File Edit Text Go Cell Tools Debug Desktop Window Help


```
* EGR 140 - Statics
* Sample computer solution
* Problem: A 750-lb crate is supported by a rope-and-pulley arrangement.
* Write a computer program to solve for the force F to be exerted on the
* free end of the rope as angle B (beta) varies from 0 to 30 degrees.
& -----------------------------------------------------------------------------
* Steps:
* 1) Draw Free Body Diagram (see attached sheet)
* 2) Write the equations of equilibrium and solve for F and & (alpha) as
% functions of B. (see attached sheet)
* 3) Use MatLab to evaluate the equations and to graph the results.
```

12
13- clc;
14 - Bdeg=0:5:30; * Vary B from to to 30 degrees in 5 degree increments
15 - Brad = Bdeg*pi/180; \quad \% Convert angle B to radians
16 - Arad=acos(2*sin(Brad)); \quad © Calculate angle A in radians
17 - Adeg=Arad*180/pi; \quad \% Convert angle A in degrees
18 - $\quad \mathrm{F}=750 . /\left(2^{*} \cos (\right.$ Brad $)+\sin ($ Arad $\left.)\right)$; \% Calculate force F
19 - Result $=$ [Bdeg', Adeg', F']'; \% Combine three vectors in a matrix
20
21 -
disp('Angle B(deg) Angle A (degi) Force F (llo)'); \% Display title
fprintf("\%8.2f $\% 13.2 f$ \% $12.2 f \backslash n^{\prime}$, Result); \%Display the table of values
23 -
plot (Bdeg, F,'r+-') * Graph Force versus angle B
grid \% Turn on gridlines
title('Force F versus Angle $\left.B^{\prime \prime}\right)$
xlabel('Angle B (deg)')
ylabel('Force F (llo)')
figure \quad * Use a new window for Graph 2
plot (Bdeg, Adeg, 'hod:') $\%$ Graph angle A versus angle B
title('Angle A versus Angle B')
xlabel('Angle B (cleg)')
Zlabel('Angle A (cleg)')

Output from MatLab program:

Command Window		
(i) New to MATLAB? Watch this Yideo, see Demos, or read Gettina Starte		
Angle B (deg)	Angle A (deg)	Force F (lb)
0.00	90.00	250.00
5.00	79.96	251.92
10.00	69.68	257.97
15.00	58.83	269.06
20.00	46.84	287.49
25.00	32.30	319.56
30.00	0.00	433.01
$f_{\boldsymbol{x}} \gg$		

