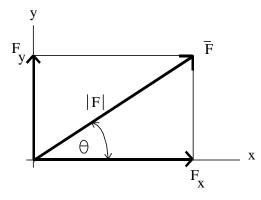
File: Complex


Complex Numbers

The representation of vectors using complex numbers, the conversion between rectangular and polar complex numbers, and calculations using complex numbers will be presented in four ways:

- 1. by hand
- 2. using the TI-85/86 calculator
- 3. using the HP-48G/GX
- 4. using the TI-89 calculator

Complex Numbers - Background and calculations by hand

Complex number can be used to represent two-dimensional vectors. The complex numbers may be stored in either polar or rectangular form.

Rectangular form:

$$\overline{F} = F_x \mathbf{i} + F_y \mathbf{j}$$

where i is a unit vector along the x-axis and j is a unit vector along the y-axis.

Polar form:

$$\overline{F} = |F| \angle \theta$$

where |F| is the magnitude of vector \overline{F} and

 θ is the angle of vector \overline{F} measured *counterclockwise from the positive x - axis*

Converting between rectangular form and polar form:

Polar to Rectangular:

$$F_{x} = |F|\cos(\theta)$$

$$F_y = |F|\sin(\theta)$$

Ex: Convert $\overline{F} = 100/30 \text{ N}$ to rectangular form.

$$F_x = 100\cos(30) = 86.6$$

$$F_y = 100\sin(30) = 50$$

so
$$\overline{F} = 86.6i + 50j N$$

Rectangular to Polar:

$$|F| = \sqrt{F_x^2 + F_y^2}$$
 $\theta = \tan^{-1} \left(\frac{F_y}{F_x}\right)$

Ex: Convert $\overline{F} = 30\mathbf{i} + 40\mathbf{j}$ N to polar form.

$$|F| = \sqrt{30^2 + 40^2} = 50$$

$$\theta = \tan^{-1}\left(\frac{40}{30}\right) = 53.13^{\circ}$$

so
$$\overline{F} = 50/53.13$$
 N

Complex Numbers using the TI-85 or TI-86

Be sure that the calculator is in degree mode (press 2^{nd} – MODE to change the mode).

Complex numbers are stored as follows:

(100/30) represents the polar number 100/30

(30,40) represents the rectangular number $30\mathbf{i} + 40\mathbf{j}$

There are two ways to convert between complex number forms:

A) Using mode:

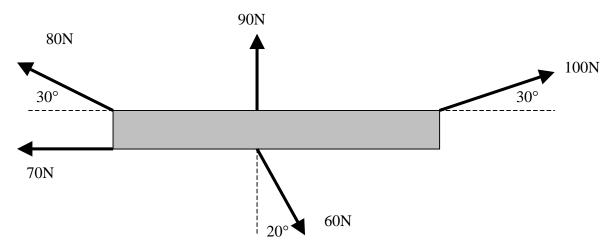
If the calculator is in <u>rectangular mode</u> then the following conversion can be made		
(100 <u>/</u> 30) Enter	(the value entered in polar form)	
(86.6,50)	(the result in rectangular form)	

If the calculator is in <u>polar mode</u> then the following conversion can be made		
(30,40) Enter	(the value entered in rectangular form)	
(50/_53.13)	(the result in polar form)	

B) Using the \rightarrow POL and \rightarrow REC functions under the CPLX menu: (This method works in any mode.)

(100 <u>/</u> 30) 2 nd CPLX	(the value entered in polar form)
→REC Enter (86.6,50)	(the result in rectangular form)

(30,40) 2 nd CPLX	(the value entered in rectangular form)
→POL Enter	
(50 <u>/</u> 53.13)	(the result in polar form)


Using variables to store complex numbers with the TI-85/86:

Variables can be used to store complex numbers in either form. For example:

$(100/30)$ STO $\rightarrow A$	(store this polar number as variable A)
$(30,40)$ STO $\rightarrow B$	(store this rectangular number as B)
A+B Enter	
(147.3 <u>/37.66</u>)	(the result is in whatever form is specified by the mode)

Performing calculations using complex numbers with the TI-85/86:

Calculations can be performed using any combination of real and complex numbers (in any form). **Example**: Find the sum of the forces acting on the beam below:

Recalling that angles in polar numbers must be *measured counterclockwise from the positive x-axis*, the sum of the forces above is easily found as follows:

or

Complex Numbers using the HP-48G or HP-48GX

Be sure that the calculator is in degree mode (use **MODES** to change the mode).

Complex numbers are stored as follows:

(100/30) represents the polar number 100/30

(30,40) or (30,40) represents the rectangular number $30\mathbf{i} + 40\mathbf{j}$

There are two ways to convert between complex number forms:

A) Using mode:

If the calculator is in <u>rectangular mode</u> then the following conversion can be made		
(100 <u>/</u> 30) Enter	(the value entered in polar form)	
(86.6 50)	(the result in rectangular form)	

If the calculator is in <u>polar mode</u> then the following conversion can be made		
(30 40) Enter	(the value entered in rectangular form)	
(50 <u>/</u> 53.13)	(the result in polar form)	

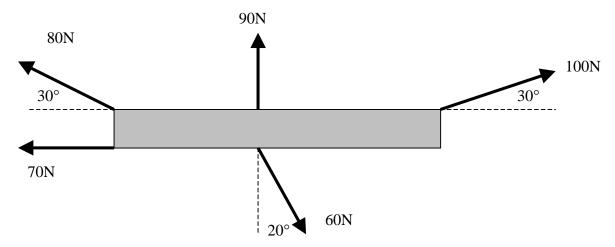
C) Using the RIGHT SHIFT POL to toggle between modes

(100/_30)	(the value entered in polar form)
RIGHT SHIFT POLAR	
(86.6 50)	(the result has been toggled to rectangular form)
RIGHT SHIFT POLAR	
(100/_30)	(the result has been toggled back to polar form)

Using variables to store complex numbers with the HP-48G/GX:

Variables can be used to store complex numbers in either form. For example:

```
(100/_30) \alpha A STO (store this polar number as variable A)


(30 40) \alpha B STO (store this rectangular number as B)

(NOW A and B can be added as follows)

\alpha A \quad Enter
\alpha B + (147.3/_37.66) (the result is in whatever form is specified by the mode)
```

Performing calculations using complex numbers with the HP-48G/GX:

Calculations can be performed using any combination of real and complex numbers (in any form). **Example**: Find the sum of the forces acting on the beam below:

Recalling that angles in polar numbers must be *measured counterclockwise from the positive x-axis*, the sum of the forces above is easily found as follows:

```
(100/_30) Enter

(0 90) +

(80/_155) +

(-70 0) +

(60/_290) +

(122.6/_106.8) (the result is in whatever form specified by the mode)
```

or

```
(100/_30) Enter

(90/_90) +

(80/_155) +

(70/_180) +

(60/_-70) +

(122.6/_106.8) (the result is in whatever form specified by the mode)
```

Complex Numbers using the TI-89

Be sure that the calculator is in degree mode (press **MODE** to change the mode).

Complex numbers are stored as follows:

(100/30) represents the polar number 100/30

30 + 40i represents the rectangular number 30i + 40j

There are two ways to convert between complex number forms:

A) Using mode:

If the calculator is in <u>rectangular mode</u> then the following conversion can be made		
(100 <u>/</u> 30) I	Enter	(the value entered in polar form)
86.6 + 50i		(the result in rectangular form)

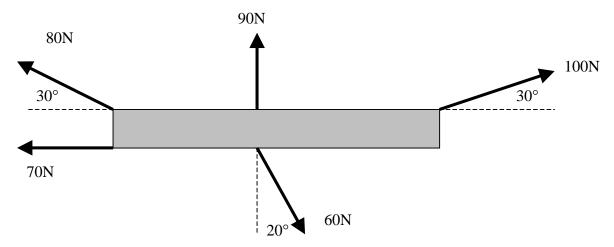
If the calculator is in <u>polar mode</u> then the following conversion can be made		
30 + 40i Enter	(the value entered in rectangular form)	
(50/_53.13)	(the result in polar form)	

D) Using the \rightarrow Polar and \rightarrow Rect functions under CATALOG:

(This method works in any mode.)

(100/_30)	(the value entered in polar form)
CATALOG	
→Rect Enter	
86.6 + 50i	(the result in rectangular form)

30 + 40i	(the value entered in rectangular form)
CATAlOG	
→Polar Enter	
(50 <u>/</u> 53.13)	(the result in polar form)


<u>Using variables to store complex numbers with the TI-89:</u>

Variables can be used to store complex numbers in either form. For example:

(100 <u>/</u> 30) STO alpha a 30 + 40i STO alpha b	(store this polar number as variable a) (store this rectangular number as b)
a+b Enter (147.3 <u>/37.66</u>)	(the result is in whatever form is specified by the mode)

Performing calculations using complex numbers with the TI-89:

Calculations can be performed using any combination of real and complex numbers (in any form). **Example**: Find the sum of the forces acting on the beam below:

Recalling that angles in polar numbers must be *measured counterclockwise from the positive x-axis*, the sum of the forces above is easily found as follows:

or