
1

EGR 125 Due date: _________________

Introduction to Engineering Methods (C++)

File: N125P4D

 Programming Assignment #4: Class StateGame

Software is commonly used to create educational games. In this project you will create a Name The State

Game that could be used to test the user’s knowledge of geography and other information about the 50 United

States.

Clue #1: It is the 14
th

 largest state.

Play the Name The State Game!

Clue #3: It is in the following time zone(s): PST/MST

2

State Information

A data file named states.txt is available on the course website with information about each state.

Part of the data file is shown below:

Note that rows 1-3 provide headings and column numbers. The other rows are organized as follows:

 State - columns 0 - 14

 State Symbol - columns 15 - 16

 …

 Bordering States - columns 83 - (end of line)

Clues – The user will be provided a series of 9 clues, in random order, from the following list. The blanks

below will contain the appropriate information obtained from the data file. The program must use these 9 clues.

 The first letter of the state is ___.

 The last letter of the state is ___.

 The first letter of the state capital is ___.

 The last letter of the state capital is ___.

 The state’s rank in population, where 1 is the largest, is ___.

 The state’s rank in size (or area), where 1 is the largest, is ___.

 The state is in the following time zone(s): ___

 The state’s nickname is ___;

 The state is bordered by the following states: ___.

3

Rules for playing the Name The State Game (single user option):

1) The program will read the information for one random state from the data file.

2) The program will provide an introductory message and ask the user if they want a summary of the rules.

3) The program will present the user with the 9 clues above in random order.

4) The program will keep score. A perfect score is 100. If the user correctly guesses the state after the first

clue, their score is 100.

5) After each clue the user will be given an option of guessing the state or asking for another clue. The clues

should be numbered (from 1 to 9) as they are presented so that the user knows how many clues they have

used.

6) Each time the user makes an incorrect guess, 5 points will be deducted from their score.

7) Each time the user asks for another clue, 5 points will be deducted from their score.

8) Display the score after every clue or guess.

9) The game will end if their score drops to 0 without correctly guessing the state.

10) After the last clue the user should be given the option of guessing the state or giving up. If they give up,

display the name of the state.

11) When the user guesses a state, they should be able to enter the full state name or the state symbol using any

mixture of uppercase or lowercase letters.

Sample game output: (The output doesn’t need to look exactly like this.)

Welcome to the Name The State Game!

Would you like a summary of the rules (Y or N)? N

Let’s get started. A state has been randomly selected. Here is your first clue:

Clue #1: The state’s rank in size (or area), where 1 is the largest, is 14

Current Score: 100

Would you like to guess the state (1) or do you want another clue (2)? 2

Clue #2: The last letter of the state capital is e

Current Score: 95

Would you like to guess the state (1) or do you want another clue (2)? 1

Enter your guess (name or symbol): LA

Incorrect. Current Score: 90

Would you like to guess the state (1) or do you want another clue (2)? 2

Clue #3: The state is in the following time zone(s): PST/MST

Current Score: 85

Would you like to guess the state (1) or do you want another clue (2)? 2

Clue #4: The state is bordered by the following states: MT,NV,OR,UT,WA,WY

Current Score: 80

Would you like to guess the state (1) or do you want another clue (2)? 1

Enter your guess (name or symbol): IDAHO

Correct! Congratulations! Your final score is 80

4

Program Requirements:
1) Creating a class: The program should define class StateGame (or pick your own name) according to the

following class diagram.

 Use the data members indicated and member functions indicated. Additional data members and member

functions can be added if you wish.

 All data members must be private. All member functions must be public.

 Once the state information has been accessed using ReadLine(), do not open or read from the data file

again. All state information should then be accessed using accessor functions (Get…()), not by reading

the file again. Do not define State, Symbol, etc., in main. Access them from the class.

 Do not display values (using cout, for example) from any member function. Access the data using

accessor functions and display any desired values within main.

 Use a member functions to get the Score and to update the Score. Do not define Score in main.

 Include a constructor function which initializes Score to 100.

 Use separate header and implementation files for the class (StateGame.h and StateGame.cpp)

Class StateGame

Member Data:

- State: string

- Symbol: string

- Capital: string

- Population: string (or int)

- Size: string (or int)

- TimeZone: string

- NickName: string

- BorderingStates: string

- Score: int

 Comments:

All data members must be private (-)

Member Functions:

+ StateGame();

+ ReadLine(); void

+ GetState(): string

+ GetSymbol(): string

+ etc (other member functions)

 Comments:

Constructor – Create new game and initialize Score to 100

Open file, read random line, extract State, Symbol, etc.

Use Get…() accessor functions to access all member data

Add other member functions, including functions to get the Score

and to update the Score.

2) Main program: The main program should make one game object and make use of member functions to

complete the game.

 Be sure to implement the Rules for playing the Name The State Game previously listed.

 Study the Sample Game Output shown previously. Your output does not to look exactly like this

example, but the example illustrates many of the requirements.

 Be sure to follow the guidelines listed under Creating a class above.

Testing your Program

Since the program selects random states and uses a random question order, exact test conditions can’t be

specified. Instead, run your program and include the results for the following:

 Case 1: Run the program for a state where you made no incorrect guesses but required 3 or more clues

before getting the correct answer. The user should enter the entire state name with a mixture of uppercase

and lowercase letters. The user should also request a summary of the rules.

5

 Case 2: Run the program for a state where you made no incorrect guesses but required 3 or more clues

before getting the correct answer. The user should enter the state symbol.

 Case 3: Run the program for a state where you guessed a state after every clue, but still needed 3 or more

clues before getting the correct answer.

 Case 4: Run the program for a state where you used all 9 clues and gave up.

 Case 5: Run the program for a state where you got the correct answer on the first try (this might take a

while!)

 Case 6: Run the program for a state where you made so many guesses that the score dropped to 0 and the

program stopped (but you didn’t give up).

Programming Hints:

1. Random Numbers – Our text introduces functions to produce random numbers. They may not be

covered in this courses unless they are needed for a project. They are needed in this project, so here is a

summary:

 rand() – This function produces a pseudo-random number between 0 and 32767 (compiler

dependent). It is pseudo-random because it produces the same sequence of number each time it is

executed on a given computer. This occurs because the random number is generated using a seed

which has a default value of 1.

 srand(time(0)) - To make rand() produce a random number, we need to first execute srand(time(0))

which generates a new seed at the current time.

 Example:

include <ctime> // needed for the time() function

include <cstdlib> // needed for the rand() and srand() functions

using namespace std;

int main()

{

 srand(time(0)); // include this or else rand() produces the same number each run

 int Number1 = rand()%10; // produces a random number from 0 to 9

 int Number2 = rand()%30; // produces a random number from 0 to 29

 …

}

 So if you want to read a random number of lines from a file with 50 lines (1 per state), then ….

2. Shuffling a list – We can see how to produce one random number, but how about shuffling a list?

Recall that one of the benefits of using the vector class is that there are many built-in functions, including

one named random_shuffle().

Since we have 9 questions that we would like to present randomly, suppose the numbers 1-9 are placed in

a vector named QuestionOrder. So the original vector contents are:

1 2 3 4 5 6 7 8 9

Executing the command below will result in a shuffled vector.

 random_shuffle(QuestionOrder.begin(), QuestionOrder.end())

One possible result for the shuffled vector is shown below.

7 3 1 9 2 6 4 5 8

6

Extra Credit Suggestions: (for a maximum of 10 additional points on the program grade)

1. The basic program described above is a 1-player game. Also give the user the option of a 2-player game.

 The 2 players will share the same keyboard.

 Ask the users to enter their first names and use their names in addressing them.

 Randomly select which player starts first.

 The first player gets the 1st clue and then must enter a state.

 If second player gets the 2nd clue and then must enter a state.

 The first player gets the 3rd clue and then must enter a state.

 This pattern continues until one of the players correctly guesses the state.

 Both players can see all clues displayed and all states that have been guessed.

2. Keep track of the game results in an output file. Each time a game is finished, append the state and score

to the end of the file. Also tell the user how many games they have played (by reading the file) and their

average score. Example:

Virginia 95

Connecticut 75

Hawaii 100

Florida 85

 You have played 4 games. Your average score is 88.75

 Show the output of the program after playing 5 games (all with non-zero scores) and also show the

contents of the output data file.

3. Use your imagination!

