
Due date: _____

Programming Assignment #3: Projectile Trajectory

A typical problem encountered in the study of dynamics is the trajectory problem. In the situation illustrated below, a projectile is fired from the edge of a cliff with an initial velocity, V_o , and a firing angle, A. The cliff has a height, h. It is desired to:

- 1. determine the distance, x_t , to the target
- 2. determine the highest elevation reached, y_{max}
- 3. determine the time to reach the target, t_t
- 4. generate a table of (x,y) points to use in plotting the trajectory

Background:

If $V_o = initial$ velocity

and A = firing angle (in degrees), then

 V_{xo} = initial horizontal velocity = $V_o cos(A)$

 $V_{yo} = initial vertical velocity = V_o sin(A)$

If $g = -9.81 \text{ m/s}^2$ = acceleration due to gravity, then solving for t in the quadratic equation (the positive root)

$$-h = V_{yo}t + 0.5gt^2$$

will give the time to reach the target, t_t (i.e., $t = t_t$). Using this value of t_t , the distance to the target is

$$x_t = V_{xo}t_t$$

and the maximum height reached is

$$y_{max} = h - \frac{\left(V_{yo}\right)^2}{2g}$$

In order to generate a table of N (x, y) values, the final distance, x_t , can be divided into N-1 even increments as shown below:

$$\mathbf{x} = 0.0, \left(\frac{1}{N-1}\right) \mathbf{x}_{t}, \left(\frac{2}{N-1}\right) \mathbf{x}_{t}, \left(\frac{3}{N-1}\right) \mathbf{x}_{t}, \dots, \left(\frac{N-2}{N-1}\right) \mathbf{x}_{t}, \mathbf{x}_{t},$$

For example, if N = 21: x = 0.00, $0.05x_t$, $0.10x_t$, $0.15x_t$, ... $0.95x_t$, x_t Using the x values above, the corresponding values of t and y can be found using

×_ X	$y = V_{y0}t + 0.5gt^2$
• V _{x0}	y v _{y0} e i 0.0ge

Program Requirements:

- 1. The user of the program should be prompted to input four values from the keyboard. Also apply the restrictions indicated and allow the user to re-enter bad inputs):
 - Cliff height, h, in m h > 0
 - Initial velocity, V_o , in m/s $V_o > 0$
 - Angle, A, in degrees $90^{\circ} > A > 0$
 - Number of point, N. $100 \ge N > 5$
- 2. Use functions for at least the following:
 - a) to convert an angle from degrees to radians
 - b) to find the two real roots of the quadratic equation when given the coefficients. The function might be called as: RealRoots(A,B,C,Root1,Root2);
- 3. Use arrays to store the values of t, x, and y. The arrays should be dimensioned for a max value of 100 points. The actual number of points, N, will be specified by the user.
- 4. Give the user the option of:
 - A) Displaying a table of values on the computer screen
 - B) Sending the values to a data file so that they can be graphed using Excel

If option A is selected, the output to the screen should include a brief program description, the input values, and calculated values for x_t , y_{max} , and t_t , and a table of (t,x,y) values. All outputs should be <u>formatted</u> and include units. The table <u>might</u> look as follows (lines are not required, but could be added for extra credit):

time, t (s)	distance, x (m)		height, y (m)
0.000	0.0		0.0
1.134	283.6		91.7
. 22.673	. 5672.6		-150.0

If option B is selected, only the values of t, x, and y should be sent to the data file. Put commas between each value so that the file can be opened in Excel as a "commas delimited file". Also prompt the user to enter the name of the output data file. The data file might look as follows:

```
0,0,0
1.134,283.6,91.7
.
.
.
22.673,5672.7,-150.0
```

Page 3

- 5. Give the user the option of re-running the program.
- 6. Include a printout of the program and run the program for the following test cases:
 - A. Example 1 below with output to screen. Include a printout of the screen output.
 - B. Example 1 below with output to a data file. Open the data file with Excel and graph the trajectory (y versus x). Include a printout of the data file, and the Excel worksheet (both the table and the graph). The graph should be nicely formatted and labeled.
 - C. Repeat 6A using the inputs indicated corresponding to your last name in Table 1. Let N = the last two non-zero digits of your student ID. For example, if your student ID is 3247608, then N = 68 points.
 - D. Repeat 6B using the inputs indicated corresponding to your last name in Table 1. Let N = the last two non-zero digits of your student ID.

Last Name begins with	V ₀ (m/s)	A (degrees)	h (m)
a-b	180	20	110
c-d	180	30	115
e-f	180	40	120
g-h	220	20	125
i-j	220	30	130
k-l	220	40	135
m-n	260	20	140
o-p	260	30	145
q-r	260	40	150
s-t	300	20	155
u-v	300	30	160
W-X	300	40	165
y-z	340	20	170

Table 1: Input parameters:

Example 1:

You can test your program with the following data:

Inputs:

 $V_o = 180 \text{ m/s}$ h = 150 m $A = 30^{\circ}$ N = 21 points

Outputs:

 $t_t = 19.9 \text{ s}$ $x_t = 3100.0 \text{ m}$ $y_{max} = 562.8 \text{ m}$ (The values of t, x, y are not shown for this example). **Extra Credit Suggestions:** (for a maximum of 10 additional points on the program grade)

- 1. Allow the user to select the units that he or she wishes to work with (e.g., V_o could be in m/s, ft/s, or mph). The output should print the appropriate units.
- 2. Instead of using arrays, use the vector class in the Standard Template Library to store the values of t, x, and y. Specify the vector size to be N after the user enters the value of N.
- 3. Give the user the option of entering inputs with the keyboard or reading them from a data file. If they are read from the data file, the program should still check to make sure that the inputs are valid.
- 4. Modify the program so that it will <u>also</u> allow the user to determine one or both of the following (for students who enjoyed Dynamics!):
 a) Given V_o, h, and the desired target distance, x_t, find A.
 b) Given A, h, and the desired target distance, x_t, find V_o.
 <u>Reference</u>: Beer and Johnson, <u>Vector Mechanics for Engineers</u>
- 5. Use your imagination!