EGR 125	Name:	
Introduction to Engineering Methods (C++)	Due Date:	
File: N125-Ch4L		

Chapter 4 Homework

Reading Assignment:

Read Chapter 4 in <u>Introduction to Programming with C++</u>, 3rd <u>Edition</u>, by Liang

Problem Assignment:

Submit each of the following by the assigned due date.

- 1) (40 pts) Work the following problems in the textbook. Work each problem by hand (not using the compiler). *Be sure to write out the instructions for each problem and include the given information*. Work all parts for each problem unless otherwise noted.
 - a) Checkpoint Exercise 4.1 on p. 121
 - b) Checkpoint Exercises 4.8, 4.9, and 4.10 on p. 126
 - c) Checkpoint Exercise 4.20 on p. 138
 - d) Checkpoint Exercises 4.24, 4.25, and 4.26 on p. 144
- 2) (60 pts) Write C++ programs for each of the following. For each program:
 - Use the TCC template (see next page). Complete the items listed in the template.
 - Include plenty of comments.
 - The output should be neatly and clearly formatted.
 - Use good programming style and proper indentation.
 - Turn in a printout of the program and printouts for all required test cases.
 - A) Vowel or Consonant? Write a program for Programming Exercise 4.10 on p. 151 in the textbook.
 - Testing: Run the program for two vowels, two consonants, and two invalid characters
 - B) *Phone Key Pads*: Write a program for *Programming Exercise 4.15* on p. 152 in the textbook.
 - Testing: Run the program for:
 - o The first three letters in your last name (all lowercase)
 - o The first three letters in your first name (all uppercase)
 - Three invalid characters
 - C) <u>Formatted Table</u>: Write a program to print a small formatted table showing material and density according to the following specifications:
 - Prompt the user to enter the names of two materials and their densities. Use the densities from the table provided below.
 - Read the material names as strings.
 - Print 2 tables similar to the output shown below, but use <u>lead</u> and <u>steel</u> for the materials.
 - o Table 1: Use the following formatting:
 - Left justification
 - 12 total spaces for each item in the table
 - Fixed format
 - 8 digits after the decimal point
 - Show trailing zeros
 - The table heading should also be left justified

- o <u>Table 2</u>: Use the following formatting:
 - Right justification
 - 18 total spaces for each item in the table
 - Scientific format
 - 4 digits after the decimal point
 - Show trailing zeros
 - The table heading should also be right justified

Sample Output

```
Enter name for material #1: Aluminum
Enter density for material #1 in g/cm^3: 2.72
Enter name for material #2: Bronze
Enter density for material #2 in g/cm^3: 8.52

Table 1:
Material Density(g/cm^3)
Aluminum 2.72000000
Bronze 8.52000000

Table 2:

Material Density(g/cm^3)
Copper 2.7200e+000
Bronze 8.5200e+000
Press any key to continue . . .
```

Table of material densities

Material	Density (g/cm ³)
Aluminum	2.72
Bronze	8.52
Lead	11.34
Steel	7.85

<u>Note</u>: If you copy the output into Word or Notepad, you might notice that your tables are no longer properly aligned. Change the font to <u>Courier New</u> (not a TrueType font) to fix the problem. Non-TrueType fonts use the same amount of space for each character. TrueType fonts do not.